Single follicular unit transplantation reconstructs arrector pili muscle and nerve connections and restores functional hair follicle piloerection.

نویسندگان

  • Akio Sato
  • Koh-ei Toyoshima
  • Hiroshi Toki
  • Naoko Ishibashi
  • Kyosuke Asakawa
  • Ayako Iwadate
  • Tatsuya Kanayama
  • Hirofumi Tobe
  • Akira Takeda
  • Takashi Tsuji
چکیده

The autologous transplantation of hair follicles that have been separated into single follicular units is an accepted treatment for androgenetic alopecia. Recent studies demonstrate that the multiple stem cell populations and surrounding cutaneous tissues coordinately regulate the hair follicle functions and skin homeostasis. Therefore, the critical issues for consideration regarding functional hair restoration therapy are reproduction the correct connectivity and cooperation with host cutaneous tissues, including the arrector pili muscle (APM) and nerve system. We report successful establishment of mouse single follicular transplantation model and autonomous restoration of transplanted hair follicle piloerection in mouse skin. Transplanted hair follicles were responsive to the neurotransmitter acetylcholine and formed proper connections with surrounding host tissues such as APM and nerve fibers, which in turn connect with not only the hair follicle bulge region but also the APM. These results demonstrate that the piloerection ability of transplanted hair follicles can be estimated quantitatively. This study makes a substantial contribution towards the development of transplantation therapy that will facilitate future functional regeneration therapy for skin and skin appendages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully functional hair follicle regeneration through the rearrangement of stem cells and their niches

Organ replacement regenerative therapy is purported to enable the replacement of organs damaged by disease, injury or aging in the foreseeable future. Here we demonstrate fully functional hair organ regeneration via the intracutaneous transplantation of a bioengineered pelage and vibrissa follicle germ. The pelage and vibrissae are reconstituted with embryonic skin-derived cells and adult vibri...

متن کامل

Hair organ regeneration via the bioengineered hair follicular unit transplantation

Organ regenerative therapy aims to reproduce fully functional organs to replace organs that have been lost or damaged as a result of disease, injury, or aging. For the fully functional regeneration of ectodermal organs, a concept has been proposed in which a bioengineered organ is developed by reproducing the embryonic processes of organogenesis. Here, we show that a bioengineered hair follicle...

متن کامل

The Basement Membrane of Hair Follicle Stem Cells Is a Muscle Cell Niche

The hair follicle bulge in the epidermis associates with the arrector pili muscle (APM) that is responsible for piloerection ("goosebumps"). We show that stem cells in the bulge deposit nephronectin into the underlying basement membrane, thus regulating the adhesion of mesenchymal cells expressing the nephronectin receptor, α8β1 integrin, to the bulge. Nephronectin induces α8 integrin-positive ...

متن کامل

Steady and Temporary Expressions of Smooth Muscle Actin in Hair, Vibrissa, Arrector Pili Muscle, and Other Hair Appendages of Developing Rats

The hair erection muscle, arrector pili, is a kind of smooth muscle located in the mammalian dermis. The immunohistochemical study using an antibody against smooth muscle alpha actin (SMA) showed that the arrector pili muscle develops approximately 1-2 weeks after birth in dorsal and ventral skin, but thereafter they degenerate. The arrector pili muscle was not detected in the mystacial pad dur...

متن کامل

Androgenetic alopecia: new insights into the pathogenesis and mechanism of hair loss

The hair follicle is a complete mini-organ that lends itself as a model for investigation of a variety of complex biological phenomena, including stem cell biology, organ regeneration and cloning.  The arrector pili muscle inserts into the hair follicle at the level of the bulge- the epithelial stem cell niche.  The arrector pili muscle has been previously thought to be merely a bystander and n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of dermatology

دوره 39 8  شماره 

صفحات  -

تاریخ انتشار 2012